SEPARABLE ABELIAN p-GROUPS HAVING CERTAIN PRESCRIBED CHAINS

BY

MANFRED DUGAS^a AND RÜDIGER GÖBEL^b

^aDepartment of Mathematics, Baylor University, Waco, TX 76798, USA; and ^bFachbereich 6—Mathematik, Universität GH Essen, 4300 ESSEN, FRG

ABSTRACT

An abelian p-group G is called $p^{\omega+1}$ -projective if $p^{\omega+1}$ Ext(G,X)=0 for all groups X. This class of groups constitutes a natural extension of the well-known class of totally projective groups whose members are precisely those groups classifiable by the Ulm-Kaplansky invariants. Fuchs asked whether $p^{\omega+1}$ -projective groups G can be characterized in terms of filtrations of G. Our Theorem 1 provides counterexamples.

§1. Results

Totally projective groups constitute the largest class of abelian p-groups which can be classified by Ulm-Kaplansky invariants, cf. Fuchs [5]. This result attracted special attention to this class of p-groups and its natural extensions. Hence it is natural to consider p^{σ} -projective p-groups G having the property that $p^{\sigma} \operatorname{Ext}(G,X) = 0$ for all groups X, cf. Fuchs [5, p. 89]. Recall that G is totally projective if and only if $p^{\sigma} \operatorname{Ext}(G/p^{\sigma}G,X) = 0$ for all groups X and for all ordinals σ ; cf. Fuchs [5, p. 89].

The class of p^{σ} -projective p-groups has been investigated for particular ordinals σ in [2, 3, 6, 8, 9] and in papers mentioned there. It is easy to see that p^{ω} -projective p-groups are direct sums of cycles. Nunke [8] proved a more general result that G is $p^{\omega+n}$ -projective if and only if G/P is a direct sum of cyclic groups for some subgroup $P \subseteq G[p^n]$ of the socle $G[p^n] = \{g \in G: p^ng = 0\}$.

Fuchs asked whether $p^{\omega+1}$ -projective groups could be characterized in terms of filtrations (= continuous ascending chains of subgroups terminating at G), cf. [2, p. 43]. In [3] it was noted that every $p^{\omega+1}$ -projective group G of cardinality κ possesses a κ -filtration $G = \bigcup_{\alpha < \kappa} G_{\alpha}$ (with $|G_{\alpha}| < \kappa$) such that $p^{\omega+1}(G/G_{\alpha}) = 0$ for all $\alpha < \kappa$.

Received October 22, 1989

We want to show that the converse does not hold. In fact, we will prove the following much stronger

Theorem 1. Let R be a ring with additive structure R^+ such that

$$\bigoplus_{\kappa} J_p \subseteq R^+ \subseteq \bigoplus_{\kappa} J_p$$

where $J_p = \hat{\mathbf{Z}}$ denotes the p-adic integers and \hat{A} denotes the p-adic completion of the (p-reduced) abelian group A.

For any cardinal $\lambda = \lambda^{\aleph_0} > |R|$ we can find a separable abelian p-group $G = \bigcup_{\alpha < \lambda} G_{\alpha}$ with a continuous chain of subgroups $\{G_{\alpha} : \alpha < \lambda\}$ containing 0 such that the following hold:

- (i) $p^{\omega+1}(G/G_{\alpha}) = 0$,
- (ii) G is not p^{σ} -projective for any ordinal σ ,
- (iii) $|G| = \lambda$,
- (iv) End $G = R + \text{Small}^{[p]} G$ where Small^[p] G is the ideal

$$\{\varphi \in \operatorname{End} G : \exists n \text{ such that } (p^n G[p])\varphi = 0\}$$

of all endomorphisms of G which are "small" on the socle

$$G[p] = \{a \in G : pa = 0\} \text{ of } G,$$

(v) $R \cap \text{Small}^{[p]} G = pR$.

Assuming GCH, we can find a proper class of regular cardinals λ such that G with $|G| = \lambda$ (as in Theorem 1) has a λ -filtration $G = \bigcup_{\alpha < \lambda} G_{\alpha}$; apply the construction and some set theoretic arguments from [4]. Assuming CH, weak diamond holds and a similar argument as under V = L gives an ω_1 -filtration $G = \bigcup_{\alpha < \omega_1} G_{\alpha}$ of a group G of cardinal $\lambda = \omega_1$ as in Theorem 1. The free parameter R in Theorem 1 can be specified to prescribe decomposition properties of G, which are similar to [1]. Here we concentrate on a special case.

COROLLARY 2. Let G and R be as in Theorem 1 and assume that the ring R/pR has only the trivial idempotents 0 and 1. Then G is essentially indecomposable.

Recall that G is essentially indecomposable (in the sense of R. S. Pierce) if any direct decomposition of G involves a bounded summand.

PROOF. If $G = A \oplus C$ and $\pi : G \to A$ is the canonical projection, then $\pi^2 = \pi \in \text{End } G$. From Theorem 1(iv) we derive $\pi = r + s$ for some $r \in R$ and $s \in \text{Small}^{\{p\}} G \triangleleft \text{End } G$. Hence $(r+s)^2 = r + s$ implies $r - r^2 \in R \cap \text{Small}^{\{p\}} G$. Theorem 1(v) implies $r - r^2 \in pR$ and $\bar{r} = r + pR$ is an idempotent of R/pR. We

derive $\bar{r} = 0$ or $\bar{r} = 1$ from our assumption on R/pR. If $\bar{r} = 0$, then $r \in pR$ and $\pi = r + s \in \text{Small}^{[p]} G$. If $\bar{r} = 1$, then $1 - r - s \in \text{Small}^{[p]} G$ and we may assume $\pi = \pi^2 \in \text{Small}^{[p]} G$. We derive $(p^n G[p])\pi = 0$ which implies $p^n A = 0$ and A is bounded.

Assuming V = L, then Corollary 2 (without Theorem 1(ii)) for regular cardinals λ is due to Cutler, Mader, Megibben [2]. Their proof is based on an "antique" method due to Eklof and Mekler from 1977 for constructing indecomposable abelian groups in L, cf. [2] or [4] for references. It is the aim of this paper to give a simpler proof of a stronger result which also holds in ordinary set theory of ZFC. Moreover, we ensure that our group G is not p^{σ} -projective for any σ , a question which could not be decided in [2].

§2. Construction of certain separable p-groups

The proof of Theorem 1 will use a combinatorial idea due to Shelah [10]. An elementary proof of this is given in the appendix of Corner, Göbel [1], and we refer to this as (Shelah's) Back Box [1]. In order to apply the Black Box we have to set up some notation and state the combinatorial result.

(a) Algebraic setup

Let R be the ring and λ be the cardinal given in Theorem 1. Hence

$$\bigoplus_{\alpha \in \kappa} e_{\alpha} J_{p} \subseteq R^{+} \subseteq \bigoplus_{\alpha \in \kappa} \widehat{e_{\alpha}} R$$

where e_{ν} ($\nu \in \kappa$) labels the components of the direct sum and $e_0 = 1 \in R$. Let $T = {}^{\omega >} \lambda$ denote the tree of all functions $\tau : n \to \lambda$ ($n < \omega$) ordered by set theoretical containment. For $\tau \in T$, define the length $l(\tau)$ to be the domain dom(τ) = n.

If $\tau \in T$ and $l(\tau) = n$, then τ is considered as generator of the cyclic R-module τR with annihilator $\operatorname{Ann}_R(\tau) = p^n R$, i.e.

$$\tau R = \bigoplus_{\nu \in \kappa} e_{\tau\nu} J_p$$

with $e_{\tau\nu}J_p \cong J_p/p^nJ_p$ canonically. Finally, let

$$B = \bigoplus_{\tau \in T} \tau R$$

and \bar{B} its torsion-completion which is the torsion subgroup of the p-adic completion \hat{B} of B.

(b) Combinatorial setup

Every $g \in \overline{B}$ is expressible as a convergent sum $g = \sum_{\tau \in T} \tau g_{\tau}$ with $g_{\tau} \in R/p^{n}R$. The support of g is defined to be

$$[g] = \{ \tau \in T : g_{\tau} \neq 0 \},$$

which can obviously be extended to subsets of \bar{B} . Observe that $|[X]| \leq |X| \cdot \aleph_0$ for any subset $X \subseteq \bar{B}$, which is crucial. In order to include all singular cardinals λ of cofinality $> \omega$ into Theorem 1, we define a norm $\| \| : \mathrm{cf}(\lambda) + 1 \to \lambda + 1$ which is any fixed, continuous, strictly increasing function with $\|0\| = 0$ and $\|\mathrm{cf}(\lambda)\| = \lambda$. This can be extended to T and subsets of \bar{B} , e.g.

$$||g|| = \min\{\nu \le \mathrm{cf}(\lambda) : [g] \in {}^{\omega >} ||\nu||\},$$

$$||X|| = \sup\{||x|| : x \in X\}$$
 for any $X \subseteq \overline{B}$.

If ||X|| is undefined, we say $||X|| = \infty$, and this can only happen if $|X| \ge \operatorname{cf}(\lambda) > \aleph_0$ by $\lambda^{\aleph_0} = \lambda$ and König's theorem. R-submodules generated by countable subsets of T are called canonical submodules. A trap is a triple (f, P, φ) where $f: \omega > \omega \to T$ is a tree embedding, P is a canonical submodule of P and P satisfying the following conditions:

- (i) $\operatorname{Im} f \subseteq P$,
- (ii) $[P] \subseteq P$ and [P] is a subtree of T,
- (iii) $\operatorname{cf}(\|P\|) = \omega$,
- (iv) ||v|| = ||P|| for all branches v of Im f.

Recall that a branch v is a map $v: \omega \to \lambda$ which will be identified with the maximal linear set $\{v \mid n : n \in \omega\}$ of T. Let Br(...) denote all branches in A constant branch is a branch v in T with $v: \omega \to \{\alpha\} \subset T$ for some ordinal $\alpha < \lambda$.

Now we can state

Shelah's Black Box. For some ordinal λ^* of cardinality λ there exists a transfinite sequence of traps $(f_{\alpha}, P_{\alpha}, \varphi_{\alpha})$ $(\alpha < \lambda^*)$ such that for $\alpha, \beta < \lambda^*$,

- (a) $\beta < \alpha \Rightarrow ||P_{\beta}|| \leq ||P_{\alpha}||$,
- (b) $\beta \neq \alpha \Rightarrow \operatorname{Br}(\operatorname{Im} f_{\alpha}) \cap \operatorname{Br}(\operatorname{Im} f_{\beta}) = \emptyset$,
- (c) $\beta + 2^{\aleph_0} \le \alpha \Rightarrow \operatorname{Br}(\operatorname{Im} f_\alpha) \cap \operatorname{Br}([P_\beta]) = \emptyset$,
- (d) for any countable subset X of \overline{B} and any $\varphi \in \operatorname{End} \overline{B}$ there exists $\alpha < \lambda^*$ such that

$$X \subseteq \overline{P_{\alpha}}, \quad ||X|| \le ||P_{\alpha}||, \quad \varphi \upharpoonright P_{\alpha} = \varphi_{\alpha}.$$

(c) Construction of the group G

Let $(f_{\alpha}, P_{\alpha}, \varphi_{\alpha})$ ($\alpha < \lambda^*$) be the sequence of traps on $B = \bigoplus_{T} \tau R$ given by the Black Box. In order to make sure that the outcoming group is not p^{σ} -projective we use the constant branch o with o(n) = 0 for a special pure subgroup H of G. Observe that $\bigoplus_{\tau \in o} \tau R_p$ has a canonical summand $D \cong \bigoplus_{i \in \omega} Z_{p^i}$. Moreover $\|D\| = 0$ is minimal.

Take any thin group H such that $D \subseteq H \subseteq \bar{D}$ is pure and $|H| > \aleph_0$. Hence D is a countable basic subgroup of H and H is not "subprojective" (a subgroup of a totally projective group), cf. L. Salce [9, p. 186, Theorema 36.10]. Such a group H cannot be p^{σ} -projective for any ordinal σ . Recall that the separable group H is thin if and only if all homomorphisms from \bar{D} into H are small—which will be used in the proof of (iv) in Theorem 1.

We will construct G as the union of a continuous chain $\{G_{\alpha}: \alpha < \lambda^*\}$ of thin subgroups G_{α} of \overline{B} subject to the following conditions:

$$G_0 = H$$
 and $G_1 = \langle H, b : b \in B, ||b|| < ||P_1|| \rangle$.

Let $\mu \leq \lambda^*$, and assume that G_{α} ($\alpha < \mu$) have been constructed.

If μ is a limit, then $G_{\mu} = \bigcup_{\alpha < \mu} G_{\alpha}$ is defined by continuity. When $\mu = \alpha + 1$ is a successor, we distinguish cases, based on the following conditions:

The Black Box provides a trap $(f_{\alpha}, P_{\alpha}, \varphi_{\alpha})$.

If $||P_{\alpha+1}|| > ||P_{\alpha}||$, then we first replace G_{α} by an extension

$$G_{\alpha}^* = \langle G_{\alpha}, b \in B \colon ||b|| < ||P_{\alpha+1}|| \rangle.$$

Clearly G_{α} is a direct summand of G_{α}^* with Σ -cyclic quotient. Abusing notation we will identify G_{α} and G_{α}^* .

Then we pick a constant branch $k_{\alpha} = \{k_{\alpha}(i) : i \in \omega\}$ with $l(k_{\alpha}(i)) = i$ such that $||k_{\alpha}(i)|| > ||P_{\alpha+1}||$ for all $i \in \omega$ and $[k_{\alpha}] \cap \bigcup_{\beta < \alpha} [k_{\beta}] = \emptyset$. This is possible by cardinality reasons.

Consider

$$a = \sum_{i \in \omega} p^{l(g_{\alpha}(i))-1} g_{\alpha}(i)$$
 and $y_n = \sum_{i \ge n} p^{l(k_{\alpha}(i))-n} k_{\alpha}(i)$ for all $n \in \omega$.

Then $a \in \overline{B}[p]$ and y_n has order p^n . Moreover, $\{y_n p^{n-1} : n \in \omega \setminus \{0\}\}$ is independent mod G_α over R.

If

$$b_n = \sum_{i=1}^n p^{l(g_{\alpha}(i))} g_{\alpha}(i)$$
 and $a_n = \sum_{i=n+1}^{\infty} p^{l(g_{\alpha}(i))-n-1} g_{\alpha}(i)$,

then $a = p^n a_n + b_n$ for $n \in \omega$, and if $x_n = a_n + y_n$ then $p^n x_n = a - b_n$ for all $n \in \omega$.

Now we define

(i)
$$G_{\alpha+1} = \langle G_{\alpha}, g_{\alpha n} R : n \in \omega \rangle \subseteq \overline{B}$$

where

(ii)
$$g_{\alpha n} = x_n, \quad a_{\alpha} = a, \quad b_{\alpha n} = b_n \quad (n \in \omega).$$

Note that $p^{\omega+1}(G_{\alpha+1}/G_{\alpha}) = 0$ and that

$$G_{\alpha+1}/\langle k_{\beta}(i)R, b: ||b|| < ||P_{\alpha}||, \beta \leq \alpha, i \in \omega \rangle$$

is a divisible p-group. Moreover, $k_{\alpha}(i)R \subset G_{\alpha+1}$ for all $i \in \omega$.

Some elementary computations show that if $s \in G_{\alpha+1}[p]$, then $\{\tau \in [s], \tau > \|P_{\alpha+1}\|\}$ is finite.

We will use $G_{\alpha+1}$ with (i) and (ii) for the next step in the construction of G, provided the $g_{\alpha n}$'s are "best possible" in the following sense.

Recall that φ_{α} has a unique extension $\bar{\varphi}_{\alpha}: \bar{P}_{\alpha} \to \bar{B}$ and $a_{\alpha} \in \bar{P}_{\alpha}$. Hence either $a_{\alpha}\bar{\varphi}_{\alpha} \in G_{\alpha+1}$ or $a_{\alpha}\bar{\varphi}_{\alpha} \notin G_{\alpha+1}$ and we consider (ii) to be "best possible"

if
$$a_{\alpha}\bar{\varphi}_{\alpha}\notin G_{\alpha+1}$$

and

(*) if
$$a_{\beta}\bar{\varphi}_{\beta} \notin G_{\alpha}$$
 for some $\beta < \alpha$, then $a_{\beta}\bar{\varphi}_{\beta} \notin G_{\alpha+1}$ as well.

Observe that G_{α} does not contain a basic subgroup of $G_{\alpha+1}$ in general, hence any homomorphism $\varphi: G_{\alpha} \to \overline{B}$ may have many extensions $\psi: G_{\alpha+1} \to \overline{B}$. However, all G_{α} are pure subgroups of \overline{B} since $G_{\alpha}/(G_{\alpha} \cap B)$ is divisible. Despite this fact, we use only one extension, $\overline{\varphi} \upharpoonright G_{\alpha+1}$, for controlling φ .

If the first choice of $G_{\alpha+1}$ and $g_{\alpha n}$, respectively, is not possible, we will work with another extension $G_{\alpha+1}$ of G_{α} as in (i) and we will use new elements $g_{\alpha n} \in \overline{B}[p^{n+1}]$ defined as follows.

Find $s_n \in \bar{P}_{\alpha}[p^{n+1}]$ $(n \in \omega)$ such that

(iii)
$$s_0 = s \text{ and } s - p^n s_n = -b'_n \in G_\alpha \quad (n \in \mathbb{N}),$$

$$\sup_{n\in\omega}\|s_n\|<\|\bar{P}_\alpha\|,$$

and define

(ii)*
$$g_{\alpha n} = x_n + s_n, \quad a_{\alpha} = a + s, \quad b_{\alpha n} = b_n - b'_n$$

and $G_{\alpha+1}$ as in (i).

In any case we have

(v)
$$p^n g_{\alpha n} = a_{\alpha} - b_{\alpha n} \quad \text{with } b_{\alpha n} \in G_{\alpha}.$$

If $a_{\alpha}\overline{\varphi}_{\alpha} \notin G_{\alpha+1}$ and (*) holds, we will use (ii)* as our second choice.

If this also is not possible, we finally stick to our first choice (ii) and do not require $a_{\alpha}\bar{\varphi}_{\alpha} \notin G_{\alpha+1}$ any more.

We set $G = \bigcup_{\alpha < \lambda^*} G_{\alpha}$ and observe that G is a pure subgroup of \overline{B} containing B. We have two immediate consequences of the Black Box and the construction of G.

PROPOSITION 2.1. Let $G_{\alpha+1} = \langle G_{\alpha}, g_{\alpha n} R : n \in \omega \rangle$, a_{α} as above and let $z_n \in \mathbb{Z}$. Then the following hold:

- (a) $\sum g_{\alpha n} z_n \in \langle G_{\alpha}, a_{\alpha} R \rangle$ if and only if $p^n | z_n$ for all n.
- (b) $\sum g_{\alpha n} z_n \in G_{\alpha}$ if and only if $p^n | z_n$ for all n and $p | \sum z_n p^{-n}$.
- (c) If $\bar{a}_{\alpha} = a_{\alpha} + G_{\alpha}$ and $\bar{g}_{\alpha n} = g_{\alpha n} + G_{\alpha}$, then

$$G_{\alpha+1}/G_{\alpha} = \langle \bar{a}_{\alpha} R, \bar{g}_{\alpha n} R : n \in \omega \rangle \cong \bigoplus H_{\omega+1}.$$

(d) $p^{\omega+1}(G/G_{\alpha+1}) \subseteq \langle \bar{a}_{\beta}R : \alpha \leq \beta < \alpha + 2^{\aleph_0} \rangle$ is an elementary abelian p-group of rank at most 2^{\aleph_0} .

REMARK. $H_{\omega+1}$ is the (generalized) Prüfer group of length $\omega+1$, cf. Fuchs [5, pp. 85, 86].

PROOF. (a) If $p^n \mid z_n$, then clearly $\Sigma g_{\alpha n} z_n \in \langle G_{\alpha}, a_{\alpha} R \rangle$. Conversely let $\Sigma g_{\alpha n} z_n \in \langle G_{\alpha}, a_{\alpha} R \rangle$. Note that $a_{\alpha} \in \overline{G}_{\alpha}$ and compute

$$\sum g_{\alpha n} z_n \equiv \sum y_n z_n \operatorname{mod} \bar{G}_{\alpha}$$

which is $\equiv 0$ only if $p^n \mid z_n$ by the choice of a constant branch k_{α} .

- (b) is similar to (a).
- (c) Since R^+ is the p-adic completion of a direct sum of copies of the additive group J_p of p-adic integers, we may assume that $R^+ = J_p$ and want to show that $G_{\alpha+1}/G_{\alpha} \cong H_{\omega+1}$. The generalized Prüfer group $H_{\omega+1}$ is defined by generators $\langle a, b_i : i \in \omega \rangle$ with $p^{\omega}H_{\omega+1} = \langle a \rangle \cong Z_p$ and $H_{\omega+1}/\langle a \rangle \cong \bigoplus_{i \in \omega} \langle b_i + \langle a \rangle \rangle$, cf. Fuchs [5, p. 85]. The identification $(a \to \bar{a}_{\alpha}, b_i \to \bar{g}_{\alpha i})$ gives rise to the desired isomorphism.
 - (d) follows immediately from (c) and the construction of G.

Proposition 2.2. Condition (*) in the construction is automatically satisfied.

PROOF. Corner, Göbel [1, p. 458, Corollary 3.10]. Observe that the nontrivial part of the two-line proof of Corollary 3.10 in [1] is hidden in an application of Lemma 3.9 from [1].

§3. Proof of Theorem 1.

We want to show that the group G constructed in $\S 2$ satisfies all conditions of Theorem 1.

G is a pure subgroup of \overline{B} containing B. Hence it is immediate that G is a separable, abelian p-group of cardinality λ . It contains a pure subgroup H of cardinality $> \aleph_0$ with countable basis. Hence G is not p^{σ} -projective for any ordinal σ , cf. Salce [9, p. 186]. From Proposition 2.1(d) we derive

$$p^{\omega+1}(G/G_{\alpha}) \subseteq p\langle \bar{a}_{\beta} : \alpha \leq \beta < \alpha + 2^{\aleph_0} \rangle_R = 0.$$

It remains to show (iv) and (v).

The ring R acts faithfully on B by scalar multiplication.

Moreover, $B \subseteq G$ are R-modules, and we will identify $R \subseteq \text{End } G$, hence

$$R + \operatorname{Small}^{[p]} G \subseteq \operatorname{End} G$$
.

By way of contradiction, let $\varphi \in \operatorname{End} G \setminus R + \operatorname{Small}^{\lceil p \rceil} G$. The homomorphism $\varphi \upharpoonright B$ has a unique extension $\overline{\varphi} \in \operatorname{End} \overline{B}$.

The following argument is similar to Corner, Göbel [1, pp. 471, 472 and 459, 460], however it also differs substantially because $G_{\alpha+1}$ is no longer contained in the *p*-adic closure of G_{α} .

For each $r \in R$ we have $\varphi - r \notin \text{Small}^{[p]} G$ and we can choose $d_k \in p^k B[p]$ such that

$$0 \neq h_k = d_k(\varphi - r) \in p^k \bar{B}[p] \cap G$$
 for all $k \in \omega$.

We may also choose $\sigma_k \in [h_k]$ such that

(a) $\sup_{k \in \omega} \|\sigma_k\| = \sup_{k \in \omega} \|h_k\|$.

Passing to subsequences we may assume

- (b) The sequences $||h_k||$ and $||\sigma_k||$ $(k \in \omega)$ are non-decreasing.
- (c) $h_{k+1} \in p^{l(\sigma_n)} \overline{B}$.
- (d) If infinitely many σ_k are on a branch of T, then all of them are.

It follows from (c) that all elements of $[h_{k+1}]$ are of greater length than $l(\sigma_k)$, hence $l(\sigma_k)$ is strictly increasing and the σ_k are all distinct.

Consider all converging sums $s = \sum \epsilon_k d_k \in \overline{B}$ ($\epsilon_k \in \{0,1\}$). Then the continuity argument in Corner, Göbel [1, p. 472] applies. We can find suitable $\epsilon_k \in \{0,1\}$ such that

(e) $s(\bar{\varphi} - r) \notin G$ where $s = s(r) \in \bar{B}[p]$.

We may assume $\epsilon_k = 1$ $(k \in \omega)$, hence $s = s_0 = \sum_{m \in \omega} p^m c_m$ for suitable $c_m \in B$. Moreover, let $s_n = \sum_{m \geq n} p^{m-n} c_m$ for $n \in \omega$. Next we will find

(f) $P \subseteq B$ a canonical summand such that $\bar{P}(\bar{\varphi} - r)$ is not contained in G for all $r \in R$.

Consider any canonical subgroup P_0 of \bar{B} containing a constant branch element w. If (f) does not hold for P_0 , there exist $r \in R$ with $\bar{P}_0(\bar{\varphi} - r) \subseteq G$. Take a canonical subgroup P containing P_0 such that $s = s(r) \in \bar{P}$ with ||s|| < ||P|| and $s(\bar{\varphi} - r) \notin G$ from (e). If we can find $t \in R$ with $\bar{P}(\bar{\varphi} - t) \subseteq G$, then $\bar{P}_0(t - r) \subseteq G$ as well, and therefore w(t - r) = 0. This forces $s(\bar{\varphi} - r) = s(\underline{\varphi} - t) \in G$, contradicting (e). Now it is easy to improve (f).

(g) If P is as in (f), then $\bar{P}_o(p^k\bar{\varphi}-r)$ is not contained in G for all $r \in R$ with $r \notin pR$ or $p^k = 1$.

We may assume k > 0 by (f). Hence p is not a divisor of r and $\bar{P}[p](p^k\bar{\varphi} - r) \subset \bar{P}[p]r$ is not contained in G because of w.

Using the Black Box, we can find $\alpha < \lambda^*$ such that

(h) $P \subseteq \overline{P_{\alpha}}, \varphi \upharpoonright \overline{P_{\alpha}} = \varphi_{\alpha},$

and (g) and Proposition 2.2 ensure that the $g_{\alpha n}$ are first or second choice, hence

(k) $a_{\alpha}\bar{\varphi}_{\alpha}\notin G_{\alpha+1}$.

If $a_{\alpha}\varphi_{\alpha} \notin G_{\alpha+1}$, also $a_{\alpha}\overline{\varphi}_{\alpha} \notin G$ by (*) of the construction. Hence we may assume $a_{\alpha}\varphi_{\alpha} \in G_{\alpha+1}$. Next we show

(1) If $\psi \supset \varphi \upharpoonright G_{\alpha}$ extends $\varphi \upharpoonright G_{\alpha}$ such that dom $\psi \supset G_{\alpha+1}$ and $a_{\alpha}\psi \in G_{\alpha+1}$, then $a_{\alpha}\psi = a_{\alpha}\overline{\varphi}$.

We have $p^{n+1} | (a_{\alpha} - b_{\alpha n})$ in G, hence $p^{n+1} | (a_{\alpha} \psi - b_{\alpha n} \varphi)$ and, similarly, $p^{n+1} | (a_{\alpha} \overline{\alpha} - b_{\alpha n} \varphi)$. We derive $p^{n+1} | (a_{\alpha} \psi - a_{\alpha} \overline{\varphi})$ in \overline{B} and $a_{\alpha} \psi = a_{\alpha} \overline{\varphi}$ follows. (m) If ψ is as in (l), then $a_{\alpha} \psi + G_{\alpha} \in p^{\omega}(G/G_{\alpha})$.

PROOF OF (m). From $b_{\alpha n} \varphi \in G$ and $\|b_{\alpha n} \varphi\| < \|P_{\alpha}\|$ follows $b_{\alpha n} \varphi \in G_{\alpha}$, hence $p^{n+1} \mid (a_{\alpha} - b_{\alpha n}) \equiv a_{\alpha} \mod G_{\alpha}$ and $p^{n+1} \mid a_{\alpha} \psi \mod G_{\alpha}$. Proposition 2.1 implies $a_{\alpha} \psi + G_{\alpha} \in p^{\omega}(G/G_{\alpha})$ and $a_{\alpha} \psi \equiv a_{\alpha} r \mod G_{\alpha}$ for some $r \in R$.

Combining (h), (k) and (l) we have $a_{\alpha}\bar{\varphi}_{\alpha} \equiv a_{\alpha}r \mod G_{\alpha}$, hence $a_{\alpha}\bar{\varphi}_{\alpha} \in G_{\alpha+1}$ contradicting (k).

We conclude End $G = R + \text{Small}^{[p]} G$ and (iv) follows.

Condition (v) of Theorem 1 follows immediately by construction of G.

REFERENCES

- 1. A. L. S. Corner and R. Göbel, *Prescribing endomorphism algebras, a unified treatment*, Proc. London Math. Soc. (3) **50** (1985), 447-479.
- 2. D. Cutler, A. Mader and C. Megibben, Essentially indecomposable abelian p-groups having a filtration of prescribed type, Contemp. Math. 87 (1989), 43-50.
- 3. D. Cutler, The existence of certain pure dense subgroups of abelian p-groups is not decidable in ZFC, J. Algebra 127 (1989), 269-278.
- 4. M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), 319-336.
 - 5. L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
 - 6. L. Fuchs, On $p^{\omega+n}$ -projective p-groups, Publ. Math. Debrecen 23 (1976), 309-313.
- 7. L. Fuchs and J. M. Irwin, On $p^{\omega+n}$ -projective p-groups, Proc. London Math. Soc. 30 (1975), 459-470.
- 8. R. J. Nunke, *Purity and subfunctors of the identity*, in *Topics in Abelian Groups*, Scott, Foresman, Chicago University Press, 1963, pp. 121-171.
 - 9. L. Salce, Struttura dei p-gruppi abeliani, Pitagora Editrice, Bologna, 1980.
- 10. S. Shelah, A combinatorial principle and endomorphism ring of p-groups, Isr. J. Math. 49 (1984), 239-257.